Machine Learning and Brain Computer Interfacing

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Machine Learning and Applications for Brain-Computer Interfacing

This paper discusses machine learning methods and their application to Brain-Computer Interfacing. A particular focus is placed on linear classification methods which can be applied in the BCI context. Finally, we provide an overview on the Berlin-Brain Computer Interface (BBCI).

متن کامل

Brain-computer Interfacing

Recently, CNN reported on the future of brain-computer interfaces (BCIs) [1]. Brain-computer interfaces are devices that process a user’s brain signals to allow direct communication and interaction with the environment. BCIs bypass the normal neuromuscular output pathways and rely on digital signal processing and machine learning to translate brain signals to action (Figure 1). Historically, BC...

متن کامل

Brain-Computer Interfacing and Games

Recently research into Brain-Computer Interfacing (BCI) applications for healthy users, such as games, has been initiated. But why would a healthy person use a still-unproven technology such as BCI for game interaction? BCI provides a combination of information and features that no other input modality can offer. But for general acceptance of this technology, usability and user experience will ...

متن کامل

Brain-Computer Interfacing for Games

Brain-computer interfaces (BCI) come with a lot of issues, such as delays, bad recognition, long training times, and cumbersome hardware. Gamers are a large potential target group for this new interaction modality, but why would healthy subjects want to use it? BCI provides a combination of information and features that no other input modality can offer. Current research is mostly still focusin...

متن کامل

Intention Concepts and Brain-Machine Interfacing

Intentions, including their temporal properties and semantic content, are receiving increased attention, and neuroscientific studies in humans vary with respect to the topography of intention-related neural responses. This may reflect the fact that the kind of intentions investigated in one study may not be exactly the same kind investigated in the other. Fine-grained intention taxonomies devel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Frontiers in Computational Neuroscience

سال: 2015

ISSN: 1662-5188

DOI: 10.3389/conf.fncom.2015.56.00006